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Note 

Construction of the Hamiltonian Matrix in 
Large Configuration Interaction Calculations* 

Large-scale scientific calculation on today’s most powerful computers makes 
balanced use of three types of computational capacity; (a) the speed of the central 
processing unit (CPU); (b) the capacity of peripheral storage which must carry 
large data sets, especially temporary data sets generated as intermediate results 
in the course of computation; and (c) the speed of data transfer between peripheral 
storage and the high speed storage connected to the CPU (channel speed). 
Characteristics (b) and (c) define the input-output (IO) capability of the computing 
system. It must be recognized that use of these three resources goes hand-in-hand 
and that much scientific computation makes severe demands on (IO) devices and 
channels. The old image of scientific computation as solely “number crunching” 
has been made completely invalid by increases in CPU power, which are inevitably 
associated with increased storage demands that require working with large 
peripheral data sets. A critical parameter, for example, in evaluating a computa- 
tional algorithm involving the processing of elements stored in a peripheral data 
set, is the number of CPU cycles completed in the time that it takes one word to 
come through a data channel (after transmission through the channel has been 
initiated). 

An important point is that balanced use of CPU power, peripheral storage 
and channel data rates, with current capabilities, have forced the use of direct 
access data sets to break bottlenecks in scientific computation which did not 
exist several years ago. Direct access data sets mean lists of data, any element of 
which can be accessed in a time characteristic of the direct access storage device 
(such as a magnetic drum or magnetic disk) and independent of the length of the 
data list. These are to be compared with sequential access data sets, in which an 
element can be accessed only after passing over all elements between the desired 
one and the one last accessed. Use of direct access storage makes possible the 
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simultaneous processing of more than one long data list by making afixed number 
of passes over the lists, minimizing the amount of data transmitted through the 
data channels, whereas sequential access to the same lists can require a number of 
passes proportional to the length of the lists of data. Minimizing IO may require 
sorting steps in which the output data list of a previous step is reordered for 
efficient use in a succeeding step. This would be the case, for example, when 
elements of an output list from a previous step, needed sequentially in a succeeding 
step, are scattered through the entire list. 

This note will describe a computing algorithm for the construction of the 
Hamiltonian matrix in the space of a large number of n-electron configurations. 
This problem arises in performing configuration interaction (CI) calculations, 
which approximate the electronic states of a system of n-electrons as the solutions 
of the secular equation 

(H-E)C=O. (1) 

Elements of the Hamiltonian matrix H in Eq. (1) are 

HI., = [ drl ... drn @,*HQJ, 
Y (2) 

whereas in Eq. (2), Q1, QJ are n-electron configurations, and are members of an 
orthonormal set of n-particle functions, which are constructed from an orthonormal 
set of one particle functions (orbitals), with members & determined in an earlier 
stage of computation. In terms of matrix elements over orbitals, we have that 

In Eq. (3), 

(i 1.i) = j do &* (- i V2 - ; Z&J) +,j 

is a one-electron matrix element between orbitals of the Hamiltonian operator 
for one electron moving in the coulombic field of a set of nuclei A, with charge 
Z, , where Y.., is the distance of the electron from nucleus A. Integrals (ij j kl) are 
given by 

(9 I kl) = j dvl dv2 A*(l) A(l) d1~*(2) 51G9/r12 (5) 

and are two-electron matrix elements of the coulombic repulsion between pairs 
of electrons. These one- and two-electron matrix elements are available from an 
earlier stage of computation. The coefficients C,,,ij , C,J,ijkl are also determined 
in an earlier computational stage; they depend on the form of configurations 
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Z, J, which are linear combinations of Slater determinants having the symmetry 
of the electronic state under consideration, each with some specified angular 
momentum coupling of the electrons. 

Thus, in the computational problem being addressed here, we are combining 
a coefficient list containing Cl,,, and C,,#,,, and an integral list containing (i 1 j) 
and (ij 1 kl) according to Eq. (3). This process produces the list of matrix elements 
HIJ . To put the magnitude of the problem into perspective, we are concerned with 
H matrices of dimension of the order of thousands (up to 103 having several 
million nonzero elements (the only ones stored) computed from integral lists and 
coefficient lists, each containing millions of elements. With high speed storage 
availability enough to store of the order of 30 000 elements in total, it is clear that 
all three lists under discussion are kept on peripheral storage. 

ALGORITHM 

A discussion of the computing algorithm will be simplified by changing the 
notation of the introduction, where the physical problem was described. 

Thus, the coefficient list will be denoted C,,, where the double index ZJ, labeling 
a Hamiltonian matrix element HIJ, has been contracted to the single index P. 
Since, in general, many matrix elements HI, are identically zero, only the nonzero 
elements of HI, will be stored. P = 1, 2, 3 ,... corresponds to (ZJ), , (ZJ)z, (ZJ), ,... 
where the index pairs (ZJ)P correspond to nonzero elements of HIJ in the desired 
order for storing HIJ. 

The integral list, available from a previous step and denoted Xo , is ordered in 
such a way that the position Q in the list can be determined from the orbital 
indices labeling the integral. 

Equation (3) the computational procedure to be carried out by this algorithm, 
can now be rewritten 

HP = 1 G.&~J. 

0 

In carrying out the summation, Eq. (6), we will put as big a block of consecutive 
members of the integral list X, into fast memory as possible, with substantially 
smaller storage requirements for other data. Suppose that N,, is the size of this 
block, then the integral list will be divided into [(NX - 1)/N,,] + 1 blocks, all but 
the last block containing N,, elements. Each block of integrals, serially numbered 
by index IZ, is processed completely by evaluating the contributions HP,n to HP 
according to 

H P,n (9 
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where Qn runs over indices Q in block n. In a later step, we sum contributions 
from the different blocks by 

HP = cHp.n. (8) 
12 

The summation of Eq. (7) followed by that of Eq. (8) is obviously equivalent to 
the desired result, Eq. (6). Remembering that the coefficient list is ordered to 
increasing P, it is clear that to complete the summation of Eq. (7) we need coeffi- 
cients distributed through the entire length of the coefficient list. Since this must 
be done as many times as we have blocks, n, we would have to read the coefficient 
list a number of times proportional to the length of the integral list. This can be 
reduced to a single read if the coefficient list is first reordered .so that all coefficients 
with Q values Qn , belonging to the integral block n, are collected together; i.e., 
we reorder to C,,, n ordering to increasing n, and for a given n retaining the original 
ordering of increasing P. 

Thus, the implementation of Eq. (6) will be done as a three-step process: 

(1) Reorder C,, to C,,, 11 ; 
(2) Carry out HP,n = Co n Cp,Q, x0,, Eq. (7); 
(3) Carry out HP = xn HP,n, Eq. (8). 

These three steps will now be described in detail. 

Step 1: Reorder C,,, to Cp,Q, 

Elements of the coefficient list C,,, are used sequentially, and can therefore be 
stored on magnetic tape. 

Suppose the number of blocks into which the integral list is divided in carrying 
out Eq. (7) is N. Then, in this first step available fast storage is divided into N 
buffers, the nth of which will receive coefficients Cp,c, required for processing the 
nth block of integrals. C,,, is now read sequentially, each element dropped into 
the appropriate buffer, and any time a buffer is filled it is written out as a record on 
direct access storage. Each record written out will contain the record number of the 
last record written out which was associated with the same IE value; i.e., the records 
for a given IZ are backwards chained. An index of the last record written out for 
each IZ value will be retained in fast storage. Records belonging to a given n value 
will be randomly distributed through the direct access data set; since it is direct 
access, they can be efficiently retrieved. This is a key point, because in the next 
step, each C,., will be read only once; without the availability of direct access 
each element would be read N times, a cost which can be prohibitive. 

The next step can be done using Cp,c, from the direct access storage. However, 
since the same CI calculation may be carried out many times, for different nuclear 
geometries for example, it is usually best to transfer the Cp,a, to tape, ordering 
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the records to increasing n. Thus, in the next step these can be used sequentially 
and the original list C,,, is no longer needed. There is another advantage in 
writing the CP,o, onto tape, and that is that it greatly decreases the requirement 
for direct access storage in a run. If a run involves Step 1 (reordering coefficients) 
and Step 3 [Eq. (S)], direct access storage requirements are dictated by the size 
Of cP,Q,- If only Step 3 is involved, direct access requirements are for the much 
shorter list Hp,n . We will therefore assume the cp,Qn written onto tape. 

The IO activity of Step 1 is one sequential read (cp,Q in), one direct access 
write with no random access (emptying buffers), one direct access read with 
random access (reading cp,Q, back in order of n), and one sequential write (CPsQ, 
out). We reiterate that Step 1 is done only once for a series of CI calculations 
using the same configurations. 

Also, remember that the cp,Q were originally ordered to increasing P. The 
process just described will result, for a given n, in the record with highest P values 
being accessed first, but in the record the ordering to increasing P is retained. 

Step 2: Evaluate HP,% , Eq. (7) 

Available fast storage will be largely taken up by the block XQ, of the integral 
list, around which this algorithm has been designed. Additional fast storage must 
be assigned for one record of Cp,c,, and a single Hptn buffer. Records of Cp,o, 
will be read in, one at a time, for the current yz value. A buffer for Hp,n will be 
filled from the end first to decreasing P, processing the cp,Q, from the end of a 
record to the beginning. Hpsn buffers written into direct access are backward 
chained as in the first step. Analysis of the order will show that first Hp.% available 
on reading will contain the lowest P values stored to increasing order. 

The IO activity of Step 2 is two sequential reads (cp,Q, in, X0, in), and one 
direct access write no random access (Hp,n out). 

Step 3: Evaluate HP , Eq. (8) 

In this step, available fast memory is mostly assigned to the largest block of the 
Hamiltonian matrix that can be accommodated. Additional fast memory must be 
assigned to one HP,n record. This block will receive elements from HP,,, to HP . 
One record at a time is read from the direct access HP,n . For the first block of”t”hXe 
H matrix we read the records for all n from the first available up to the one 
containing Hp,,,n for this block. For the second block of the H matrix, the record 
which contained HP max,n for the first block is the one containing HP,,,, for the 
second block so that reading of HP,, is resumed by rereading the last record 
needed for the first block. After each block of H is completed, it is written out 
into a sequential access data set. The process continues until the H matrix is 
completed. 

581/11/3-IO 
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The IO activity in this step is one direct access read with random access (Hp,n in) 
and one sequential write (H, out). 

EXTENDED ALGORITHM 

For very large calculations, it may be the case that the direct access storage 
availability is not enough to accommodate the CP,Q, during the sorting stage of 
Step 1. A trivial modification of the algorithm will handle this case. In Step 1, 
run through as many CPs, as can be accommodated in the available direct access 
storage, and write Ckr,)on . Now continue processing C,,, until direct access is 
refilled, and write Cg”L , etc. Repeat steps 2 and 3 for each CL”, where ~1 indexes 
the number of writes’ii Step 1. 

* ?a 

DISCUSSION 

The importance of this algorithm is that it minimizes the amount of IO in 
evaluating the Hamiltonian matrix. The number of words transmitted through 
the data channels is independent of the amount of fast storage available. The only 
dependence on fast storage capacity is the integral list block lengths, and buffer 
lengths associated with CP,c,. Once the fast storage is large enough to accom- 
modate buffer lengths to produce records that optimally conform to the character- 
istics of the direct access decive, there is no significant added efficiency from 
increased fast storage. Thus, fast storage requirements are modest. 

These algorithms have been used extensively in the ALCHEMY computer 
programs1 with up to 5000 configurations. We anticipate that calculations of this 
size, and larger, will be routine, particularly as efficient diagonalization procedures 
for the lowest roots of the Hamiltonian matrix are developed. 
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